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Susan Carey’s account of Quinean bootstrapping has been heavily criticized. While it purports to explain
how important new concepts are learned, many commentators complain that it is unclear just what boot-
strapping is supposed to be or how it is supposed to work. Others allege that bootstrapping falls prey to
the circularity challenge: it cannot explain how new concepts are learned without presupposing that

learners already have those very concepts. Drawing on discussions of concept learning from the philo-
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sophical literature, this article develops a detailed interpretation of bootstrapping that can answer the
circularity challenge. The key to this interpretation is the recognition of computational constraints, both
internal and external to the mind, which can endow empty symbols with new conceptual roles and thus
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If concepts are the constituents of thought, the thoughts we can
think are limited by the concepts we can have. It thus matters a
great deal whether humans can learn new concepts throughout
their lifespans. Enter Susan Carey’s magnum opus, The Origin of
Concepts,! which develops some of Quine’s metaphors about concept
learning into a full-blown account that Carey calls Quinean bootstrap-
ping. While Origin is widely regarded as a tour de force, commenta-
tors disagree about whether Quinean bootstrapping (hereafter:
bootstrapping) manages to do the work Carey requires of it. In part,
this disagreement traces to the difficulty of the task. There are pow-
erful reasons, tracing to Plato’s Meno and honed in recent decades by
Jerry Fodor, to think that concept learning is impossible. But the dis-
agreement also exists because Origin is, at least in places, a difficult
text to interpret. It is not always clear just what Carey takes boot-
strapping to be. In his review of Origin, Fodor (2010, p. 8) puts the
point this way:

Reading Susan Carey’s book feels a little bit like coming in at the
middle of a movie: you can sort of figure out what’s going on,
but you wouldn’t bet the farm that you've got it right.

E-mail address: jbeck@yorku.ca

! Hereafter: Origin. Unless otherwise noted, all page references are to this book
(Carey, 2009a). Carey’'s mature account of bootstrapping is also summarized and
developed in several articles (Carey, 2004; Carey, 2009b; Carey, 2011a; Carey, 2014).

2 For broadly sympathetic commentaries, see Shea (2009), Margolis and Laurence
(2008), Margolis and Laurence (2011) and Piantadosi, Tenenbaum, and Goodman
(2012). For more critical commentaries, see Fodor (2010), Rey (2014), Rips, Asmuth,
and Bloomfield (2006), Rips, Asmuth, and Bloomfield (2008) and Rips and Hespos
(2011).

http://dx.doi.org/10.1016/j.cognition.2016.10.017
0010-0277/© 2016 Elsevier B.V. All rights reserved.

Fodor, of course, is an outspoken critic of Carey’s. But it is not only
her critics who have trouble pinning her down. Carey charges many
of her would-be allies with misinterpreting her as well.?

This paper aims to charitably elucidate Carey’s account of boot-
strapping—to rewind to the start of her movie and play it back in
slow motion, pausing at key points with new distinctions and clar-
ifications. In so doing, I will not defend every aspect of bootstrap-
ping, but I will defend it from one prominent line of criticism.
Multiple critics allege that bootstrapping cannot explain how
new concepts are learned without circularly presupposing that
learners already have those very concepts. Drawing on develop-
ments from the philosophical literature on concept learning, I will
show how it can.

One caveat. Although the resulting account of bootstrapping is
inspired by Carey’s writings, I am far from certain that she would
endorse every aspect of it. Thus, while I will attribute the account
to Carey, one might more cautiously view it as one promising way
of developing her views.

1. Introducing bootstrapping

Carey is not interested in just any type of concept learning. A
thinker that possesses the concepts FeMaLE and fFox, and then learns

3 Inspired by Origin, Piantadosi et al. (2012) present a computational model of
bootstrapping, but Carey (2014) objects that it is not really a model of bootstrapping
(see §4.2 below). See also Carey’s (2011b, p. 162) reply to Shea’s (2011) interpretation
of bootstrapping, as well as the other exchanges between Carey and her commen-
tators in that volume.
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that a vIXeN is a FEMALE Fox, arguably learns the new concept vixen.? It
is doubtful, however, that the thinker alters her expressive power
since VvIXeN has the same content as FEMALE Fox. Such an episode thus
would not count as bootstrapping.

Nor is Carey interested in the learning of a single new primitive
concept, as when you meet John Doe for the first time and thereby
acquire the concept joun pok. Such cases arguably count as increas-
ing one’s expressive power (now you can think thoughts about
John Doe; before you couldn’t), but Carey does not include them
in her discussion of bootstrapping.

Rather, Carey is occupied by cases wherein thinkers learn a
batch of new concepts all at once that are at least partially
inter-defined, such as concepts of positive integers (pp. 287-
333), concepts of rational numbers (pp. 344-359), and concepts
of physical entities such as matter, weight, and density (pp.
379-411). To relay the difficulty of such episodes of concept
learning, Carey deploys the bootstrapping metaphor. But
whereas hoisting oneself by one’s own bootstraps is literally
impossible, Carey believes that learning these concepts is
merely difficult.

Three theses form the core of Carey’s account of concept learn-
ing. First:

Discontinuity: Over development, thinkers acquire new batches
of concepts that alter their expressive power.

One type of discontinuity involves a pure increase in expressive
power, whereby the thoughts one could think prior to the boot-
strap form a proper subset of the thoughts one can think after
the bootstrap. For example, while many two year olds can recite
a portion of the count list (“One, two, three, ... "), they don’t seem
to know what the words in the list mean. If asked for n pennies
from a pile, or to point to the card with n fish, they will respond
with a random number of pennies or point to a random card.
Moreover, their failures consist of more than ignorance of lan-
guage. While further experimental probing reveals evidence of
representations with quantitative content—including analog mag-
nitude representations of approximate numerosities, object file rep-
resentations that track the numerical identity of individual objects
in parallel as their spatiotemporal position changes, and natural
language quantifiers that are a part of each child’s universal gram-
mar—Carey makes a persuasive case that these representations all
lack the expressive power to represent the integers. Carey con-
cludes that two year olds lack the representational resources to
think about the integers. Four year olds, by contrast, have those
resources; they succeed on the point-to-a-card and give-me-n
tasks.”

When children first memorize the count list, it serves as a
mere placeholder structure. It encodes serial order (“three” comes
after “two,” which comes after “one”), but the nature of that
order is not defined for the children. It’s as though they were say-
ing “eeny, meeny, miny, mo.” Nevertheless, Carey maintains that
this placeholder structure plays a crucial role in explaining how
children acquire integer concepts, and that similar placeholder
structures play an essential role in other episodes of concept
learning.

Placeholder: Placeholders play an important role in generating
conceptual discontinuities.

4 Carey (p. 5) takes concepts to be mental representations with semantic as well as
non-semantic properties that serve as the constituents of thoughts, including beliefs.
This minimal characterization should suffice for our purposes.

5 Carey also recognizes a second type of discontinuity, conceptual change, which not
only involves thoughts that one can think after the bootstrap that one could not think
before the bootstrap, but also thoughts that one could think before the bootstrap that
one cannot think after the bootstrap.

In defense of Placeholder, Carey argues that people who lack the
relevant placeholder structures often fail to acquire new net-
works of concepts. For example, children who grow up in lin-
guistic communities without a count list never become
cardinal-principle knowers (pp. 302-4). Moreover, intelligent ani-
mals that lack language, such as chimpanzees, can laboriously
learn precise integer concepts piecemeal, but never seem to
extrapolate beyond those concepts to induce concepts of further
positive integers (pp. 329-33). However, an African Gray Parrot
that first learned “seven” and “eight” as mere placeholder terms
was able to infer their cardinal meanings upon learning their
serial locations in an ordered count list (Pepperberg & Carey,
2012). Finally, Carey observes that curriculum interventions that
place an emphasis on placeholder structures outperform other
curriculum interventions in generating conceptual change (pp.
479-84).

Carey’s third thesis is:

Bootstrapping: There is a learning process called bootstrapping
that draws on placeholders to bridge conceptual discontinuities.

Carey explicitly takes bootstrapping to involve not just a
description of succeeding discontinuous conceptual systems, but
a learning process that explains how thinkers get from the first
conceptual system to the second. In support of this contention,
Carey maintains that children must somehow manage to use
placeholders to bridge conceptual discontinuities, and that it's
hard to believe that learning isn’t involved given that conceptual
discontinuities are often bridged as a result of instruction and
study, with success predicted by the particular curriculum that
one’s teachers adopt. Of course, any learning process must be
psychologically realistic. Thus, a bootstrapping explanation of
integer concepts must only appeal to representational resources
that we are justified in believing that children actually have, such
as analog magnitude and object file representations.

Carey’s parade case of bootstrapping involves the acquisition
of natural number concepts such as THreg, seveN, and TN (pp.
287-333). The bootstrap begins when children memorize the
count list placeholder system, typically by age two. Some
months later they become “one-knowers.” They’ll give you
one penny or point to the card with one fish, but respond ran-
domly with larger values. Six to eight months later children
become “two-knowers.” They succeed on the give-me-a-
number and point-to-a-card tasks for one or two, but no more.
Several months later they become three-knowers, and then
sometimes four-knowers. According to Carey, children at this
stage have learned to use their object file systems to place
models stored in long-term memory in one-to-one correspon-
dence with objects in the world, and to associate such states
of one-to-one correspondence with the first four number
words. So they know that there is “one” object when the
object is in one-to-one correspondence with a model of a sin-
gleton in long-term memory {i}; that there are “two” objects
when the objects are in one-to-one correspondence with a
model of a pair of individuals in long-term memory {j, k};
and so on, up to four (the upper bound of the object file sys-
tem). Carey calls children at this stage “subset-knowers” and
calls the system they use “enriched parallel individuation.”
Finally, by three-and-a-half or four years of age, children
assign meanings to the remainder of the terms in their count
list. According to Carey, this happens when children notice a
“critical analogy”:

The critical analogy that provides the key to understanding how
the count list represents number is between order on the list
and order in a series of sets related by an additional individual.
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This analogy supports the induction that any two successive
numerals will refer to sets such that the numeral further along
in the list picks out a set that is one greater than that earlier in
the list. (p. 477)

Only at this point do children become “cardinal principle-knowers,”
and thus associate the appropriate integer with each word in their
count list.° Carey takes this episode of bootstrapping to be typical
insofar as it involves two essential stages (pp. 306-7): the construc-
tion of a network of symbolic placeholders that are directly related
to one another, but not initially mapped onto preexisting concepts;
and the subsequent interpretation of those placeholders through
non-demonstrative modeling processes such as analogical mapping,
thought experimentation, limiting case analysis, induction, and
abduction.

2. Two challenges for bootstrapping
2.1. The circularity challenge

Drawing on Fodor’s well-known skepticism about concept
learning (Fodor, 1975, 1980, 2008), Fodor (2010) and Rey
(2014) charge Carey with failing to explain how bootstrapping
could increase a thinker’s expressive power. Carey, recall, leans
on “modeling processes” such as induction, abduction, analogy,
limiting case analyses, and thought experimentation (pp. 307,
418, 476). Because these processes “are not deductive” (p.
307), it is tempting to think that they can “go beyond” their
inputs and undergird the sorts of conceptual leaps that interest
Carey. But Fodor and Rey argue that any such impression is illu-
sory: Carey’s modeling processes cannot explain how placehold-
ers are endowed with new contents without circularly
presupposing that the thinker possesses concepts with those
very contents.

Consider induction, which “leaps” from a finite set of obser-
vations to a conclusion about unobservables. The conclusion
clearly goes beyond the inputs in the sense that the conclusion
does not deductively follow from the inputs. However, the con-
clusion itself can still be couched in terms of concepts that are
available to the thinker. Induction tells you how to transition
from 1000 sightings of green emeralds to the conclusion that
all emeralds are green, but it doesn’t tell you where to get the
concepts ALL, EMERALD, Or GREEN. In other words, induction selects
an ampliative conclusion from your hypothesis space, but it
doesn’t generate or expand your hypothesis space; it presup-
poses that space. Likewise, reasoning by analogy can help one
to draw novel conclusions about a target domain by comparing
it to a more familiar domain, but it presupposes that one has
the concepts with which to characterize the familiar domain.
Thus, it can be useful to reason about electric circuits by com-
paring them to hydraulic systems, but only if you have the con-
ceptual resources to characterize the properties of hydraulic
systems. A similar circularity worry can be raised about the
other processes on Carey’s list.

6 Some researchers have challenged Carey’s interpretation of the experimental
data. For example, Spelke (2011) argues that Carey underestimates the role that
analog magnitude representations play in children’'s acquisition of natural
number concepts, Gelman (2011) argues that Carey underestimates children’s
innate capacity to represent discrete and continuous quantities precisely, and
Davidson, Eng, and Barner (2012) present evidence that children don’t truly
understand the successor relation until some time after they become cardinal
principle-knowers. For our purposes, we can set such empirical worries to one
side. Our question is not whether Carey has the details of any particular
episode of bootstrapping just right, but whether she has succeeded in isolating
a general learning process that has the potential to explain how conceptual
discontinuities are bridged.

This worry can be made concrete by recalling Carey’s appeal to
the “critical analogy” that “supports the induction that any two
successive numerals will refer to sets such that the numeral further
along the list picks out a set that is one greater than that earlier in
the list” (p. 477, emphasis added). Rey (2014, p. 117) objects, “But
here ‘is one greater than’ expresses the very concept of successor
whose acquisition Carey is trying to explain. In the first place,
one can ask how this concept even occurs to the child.” Rey con-
cludes that the child must already have the concept successor to
entertain the analogy that he takes Carey to credit with generating
that concept.

2.2. The deviant-interpretation challenge

In his critique of Carey’s account of bootstrapping, Rey
(2014) presses a second challenge. Why don't children
interpret the placeholders in a deviant or non-natural way?
Recalling Goodman’s (1955) famous grue paradox and
Kripke's (1982) famous discussion of Wittgenstein on rule
following, he writes:

Specifically, Carey’s appeal to ‘induction’ as the way the
child projects beyond the first three members of the
sequence of cardinal numbers is directly prey to Goodman’s
point: simply observing the correspondence between the
first three cardinal sets and first three ordinals (or any
sequence of sets and finite sequence of terms) is compatible
with an infinite number of functions compatible with the
finite data the child has seen, e.g. a la Goodman, v=Xx+1 IF
X IS ENCOUNTERED BEFORE 3000 CE, OR OTHERWISE 2, Or, to take the kind
of example discussed by Kripke (1982) in his exposition of
Wittgenstein, Y=xX+1 UNLESS X=57453, IN WHICH CASE Y=2,—and,
again, and so on.

[(Rey, 2014, p. 120)]

As Rey goes on to note, Goodman was concerned with the norma-
tive question of how good inductions ought to proceed whereas
Carey is instead concerned with the descriptive question of what
it is about children’s psychology that makes their inductions actu-
ally proceed as they do. But Rey worries that Carey fails to answer
even the descriptive question.

2.3. Setting aside the deviant-interpretation challenge

The circularity and deviant-interpretation challenges are
independent of one another. The deviant-interpretation chal-
lenge assumes that thinkers have the conceptual resources with
which to formulate the hypothesis that (say) “eleven” refers to
eleven, but asks why children endorse that hypothesis over the
various deviant hypotheses that compete with it. The circularity
challenge, by contrast, questions how children could even for-
mulate the hypothesis that “eleven” refers to eleven in the first
place.

Unfortunately, the circularity and deviant-interpretation chal-
lenges are not always clearly distinguished, sowing confusion
and engendering crosstalk between bootstrapping’s critics and
defenders. For example, in their critique of bootstrapping Rips
et al. (2006) imagine two children who have memorized the
count list up to “nine” as an uninterpreted placeholder struc-
ture, but then interpret it in two different ways. One child
interprets the count list in the standard way, as embodying
the successor relation. But the other interprets it as embodying
a non-standard cyclical system according to which “one” refers
to sets with 1 or 11 or 21... objects, “two” refers to sets with 2
or 12 or 22... objects, and so on. Rips et al. object that Carey
fails to explain why children generalize to the integers rather
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than to the deviant cyclical system. This makes it sound like
they are concerned with the deviant-interpretation challenge.
But Rips et al. explicitly insist that their worry is not merely
a rehash of Goodman and Kripke’s concerns since it shows
not just that the child’s concepts are “ambiguous between rival
numeral systems” but that they are “completely vague outside
the counting range ‘one’ to ‘nine” (2006, p. B58). While Rips
et al. don’t elaborate on what they mean by vagueness (is there
supposed to be a Sorites paradox lurking here?), they may
mean that the child’s concepts lack the expressive power to
precisely formulate either numerical system, in which case their
real concern is the circularity challenge, not the deviant-
interpretation challenge. This interpretation is supported by
their suggestion that children would need something like the
Peano axioms in order to formulate the correct hypothesis,
but would then “already have the natural number concept”
(2006, p. B59). Perhaps motivated by these remarks, Margolis
and Laurence (2008) implicitly interpret Rips et al. (2006) as
pressing the circularity challenge. They object that Rips et al.
underestimate the conceptual resources that children begin
with—resources that, they argue, are sufficient to formulate
the proper induction. Rips et al. (2008) in effect respond that
Margolis and Laurence don’t answer the deviant-interpretation
challenge; even if children have the concepts they need to for-
mulate the proper induction, we are left with no explanation of
why they choose that induction rather than one of the many
deviant inductions that they also have the conceptual resources
to formulate. So perhaps Rips et al. do mean to be raising the
deviant-interpretation challenge. If so, however, it remains
unclear how their version of this challenge is meant to differ
from a descriptive version of the traditional problem associated
with Goodman and Kripke.”

In any case, I want to set the deviant-interpretation chal-
lenge aside. While it's a deep and stubbornly difficult problem,
it’s not specific to theories of concept learning but rather afflicts
all theories of inductive learning, including theories that seek
only to explain how new facts are learned. Even the most
ardent concept nativist would still need to explain why we
infer that all emeralds are green rather than grue. It hardly
seems fair, then, to reject Carey’s account of concept learning
on the grounds that it includes—as one of its elements—an
appeal to induction. The situation would perhaps be different
if induction formed the totality of Carey’s account of bootstrap-
ping, but there is much more to it than that. As will become
clear later, the most innovative elements of bootstrapping—in-
cluding the elements that enable it to answer the circularity
challenge—are independent of its appeal to induction. The
remainder of this paper will thus set the deviant-
interpretation challenge to one side in order to focus on the cir-
cularity challenge.

7 Rips et al. (2008, p. 944) again try to distance their objection from traditional
worries about induction such as Goodman’s by appealing to vagueness.

The usual problem is justifying one possible inductive conclusion over another
(e.g., linear extrapolation of data vs. polynomial extrapolation of the same data).
By contrast, the problem with the Induction is that its conclusion is entirely vague
about the continuation and hence consistent with many different correlations
between numerals and set sizes. It would take a separate inference of a different
kind to decide among these possibilities.

Here Rips et al. seem to take the usual problem of induction to concern choosing
between two options (say, green vs. grue) and their worry to concern choosing
among many options. But this can’t be right since the usual problem includes infi-
nitely many options as well. We can define “grue;” as green before 3000 and blue
afterwards; “grue,” as green before 3001 and blue afterwards; etc. Goodman won-
dered why the hypothesis that all emeralds are green should be preferred to alterna-
tive hypotheses containing any one of these related predicates. There wasn’t one
particular date that exercised him!

3. Two interpretations of bootstrapping

To understand how Carey addresses the circularity challenge,
some distinctions are needed. If a person is currently using a
concept, [ will say that she is deploying the concept. For example,
when you actively think that the cat is on the mat, you deploy
the concept car. By contrast, a concept is available to a person
just in case she could deploy it in reasoning, thinking, categoriz-
ing, remembering, and other cognitive processes without much
effort, simply by endogenously shifting her attention. Thus, if
you are busy thinking about the cat being on the mat, then pre-
sumably you are not deploying your concept PENGUIN. Neverthe-
less, the concept is available to you. You could deploy it
simply by initiating the appropriate shift in your attention. Pre-
cisely how many concepts a person can deploy at any one time
is open to debate, but will depend on such factors as the capac-
ity of working memory and the extent to which occurrent
thought operates serially or in parallel. Whatever the number,
it is surely quite small in comparison to the number of concepts
that are available to a person.

We can further recognize a class of latent concepts that are
unavailable yet expressible in terms of concepts that are stored
in the thinker's mind. One way for a concept to be latent is
for it to be unobviously composed from one’s available concepts.
Consider the concept Bursg, which is satisfied by an object just
in case it is either green and circular, or blue and enclosed by
a prime number of sides, or red and preceded in presentation
by a yellow triangle. We can suppose that each of the con-
stituent concepts in this definition—GREEN, CIRCULAR, OR, AND, PRIME,

. —are available to you. But of course you do not normally
go around categorizing things in this peculiar way, and would
find it rather difficult to do so. This gerrymandered combination
of concepts isn’t available for you to deploy in cognition even
though each constituent is. It takes more than an easily executed
endogenous shift in attention for you to put the individual con-
cepts that constitute Burse together and deploy them. As a result,
BURSE counts as latent for you (though it might become available
with sufficient practice).®

There is a second way for a concept to be latent. It can be
fully formed and stored in the mind, but isolated from general
cognitive processes such as reasoning and categorizing. For
example, perhaps the concept GRAVITATIONAL MAss was stored inside
an innate module in your head, awaiting the proper inputs to
be released (presumably inputs you received in your first phy-
sics class). Following Rey (2014), we can say that such concepts
are lying in wait.

Finally, I'll say that a concept is foreign just in case it is neither
available nor latent. For example, the concept GRAVITATIONAL MASS is
presumably foreign for Fido the dog. It is not available to Fido,
nor composable from concepts that are available to Fido, nor lying
in wait in some module of Fido’s. Presumably there are likewise
concepts that are currently foreign for you, though of course you
cannot say what they are. Whether any concepts that are currently
available to you were at one point foreign for you is controversial.
For instance, it is controversial whether GraviTATIONAL MAss was for-
eign for you prior to your first physics class, or merely latent in
you.

8 Not all complex concepts will count as latent. For example, the concept HApPY
MAN is complex, but for typical human thinkers it is available, not latent. There
may be individual differences. Compositions that are obvious to you might be
unobvious to me, and vice versa. There will also surely be borderline cases that
are difficult to classify as obvious or unobvious (even for a thinker at a time),
though for our purposes it is sufficient that the distinction admits of many clear
cases on either side.
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With the distinctions between available, latent, and foreign
concepts at hand,® we can now distinguish a thinker’s available
expressive power, the expressive power of her available concepts,
from a thinker’s total expressive power, the expressive power of her
available and latent concepts combined, and recognize an ambiguity
in Discontinuity.

Modest Discontinuity: Over development, thinkers acquire (i.e.,
make available) new batches of latent concepts that alter their
available expressive power.

Radical Discontinuity: Over development, thinkers acquire (i.e.,
make available) new batches of foreign concepts that alter their
total expressive power.

We can consequently distinguish two versions of Bootstrapping.
Modest Bootstrapping: There is a learning process called boot-
strapping that draws on placeholders to bridge modest concep-
tual discontinuities.

Radical Bootstrapping: There is a learning process called boot-
strapping that draws on placeholders to bridge radical concep-
tual discontinuities.

We thus reach a crucial interpretive fork: Is bootstrapping supposed
to be modest or radical?

After considering and rejecting two versions of Modest Boot-
strapping in Section 4, I'll develop and defend a version of Radical
Bootstrapping in Sections 5-6.

4. Modest bootstrapping
4.1. Modest bootstrapping and the circularity challenge

The circularity challenge asks how bootstrapping can alter one’s
expressive power without circularly presupposing that one had
concepts with the new expressive power all along. We can now
see that there are two versions of this challenge, one that asks
how bootstrapping can alter a thinker’s total expressive power
and a second that asks how bootstrapping can alter a thinker’s
available expressive power. Modest Bootstrapping does not endea-
vor to answer the former version. In fact, it is typically endorsed
precisely because its proponents judge it impossible to learn for-
eign concepts. But proponents of Modest Bootstrapping do offer
explanations of how a thinker’s available expressive power can
be altered without circularity. And they correctly point out that a
change in available expressive power is nothing to scoff at. When
you increase your available expressive power, there are thoughts

9 These distinctions are partially inspired by Rey’s (2014, p. 112) helpful distinction
between manifested and possessed concepts, though our taxonomies are marked by
differences as well as similarities. His manifested concepts are roughly my available
concepts, but I prefer the term “available” because it stresses that being deployed is
not what’s at issue. I also interpret his category of possessed concepts as roughly
corresponding to my category of latent concepts, but I take issue with the way Rey
explicates possessed concepts. Early in Rey, 2014 (p. 112) he says, “I shall take it as a
useful point of agreement and departure for the moment that ‘possession’ is the
relation that Chomskyan linguists think neonates bear to ‘Universal Grammar,’ before
they begin manifesting this grammatical competence.” One problem with this
analogy, however, is that elements in a Universal Grammar are subdoxastic, and it is
in the nature of subdoxastic states that they never become available for conscious
deployment. Yet on Rey's view, possessed concepts can become available for
conscious deployment. A second problem is that there are multiple ways for a
concept to be latent, and Universal Grammar really only exemplifies one of these
ways. Later in his article (p. 125) Rey offers a different formulation. He says, “one
might usefully think of the set of concepts that are innately possessed as being just
that set that can come to be manifested by learning and bootstrapping.” Yet as Carey
(2014) points out, this formulation threatens to be empty since everyone who thinks
that a concept can be learned will then have to agree that it is innately possessed—
even empiricists. A further difference between our taxonomies is that Rey has no term
for the category of concepts that I call “foreign.”

that are newly available for you to deploy. There is thus a real psy-
chological difference between a person who has a concept only
latently and a person who has that same concept available for
deployment. An emphasis on total expressive power masks this
real cognitive change by blurring the distinction between relabel-
ing a concept that was already available (e.g., by introducing EmAiL
to stand for ELecTroNIC MAIL) and making a concept that was previ-
ously only latent available for the first time. As we’ll see in the next
two subsections, however, Carey has empirical grounds to reject
modest accounts of bootstrapping for the episodes that interest
her.

4.2. Unobvious composition

One way Modest Bootstrapping might work is through unobvi-
ous composition. By composing available concepts in new and
unobvious ways, thinkers could increase their available expressive
power. For example, through enough practice sorting things
according to whether they are burse or not, you could make the
latent concept Bursk available.

While Burst is a toy example, various mathematical concepts,
such as continuum, could also be learned in this way since they
are constructed from familiar and widely available concepts, albeit
none too easily. Moreover, although Burse admits of a Boolean def-
inition, other latent concepts might have different sorts of struc-
tures. For example, perhaps certain concepts have prototype
structures. If so, some latent concepts might be constituted by suf-
ficiently unobvious complexes of weighted features. Or perhaps
certain concepts are defined by their place in a theory. If so, some
latent concepts might be constructed from sufficiently unobvious
Ramsey sentences (see Rey, 2014, pp. 114-116 and Section 5.4
below).

Piantadosi et al.’s (2012) account of how children learn the inte-
ger concepts exemplifies this unobvious-composition strategy.
They propose a Bayesian statistical model whereby children build
positive integer concepts from a variety of primitive representa-
tions and operations implemented in an innate lambda calculus,
including set-theoretic and logical operations, operations over
words in the counting routine, operations that test whether a set
has one, two, or three members, and recursion. The model’s prim-
itives are sufficiently rich to explain how the successor function
could be arrived at compositionally, but without needing to sup-
pose that the successor function is available to children from the
outset.

Piantadosi et al. (2012, p. 200) write that their approach “is
inspired by the bootstrapping theory of Carey,” but Carey unequiv-
ocally rejects it. She objects that Piantadosi et al. “merely assume—
without evidence—that full general resources of lambda calculus
and logic are available for the generation of hypotheses about what
‘one’, ‘two’, ‘three’, ‘four’, ‘five’... through ‘ten’ mean” (2014, p.
151). Thus, Carey does not deny that new concepts can be learned
through unobvious composition. She is just skeptical of theories
that claim that they are so learned by being composed from con-
ceptual resources whose existence is empirically unsupported.
Moreover, Carey goes to great lengths to show that the resources
that we do have empirical evidence to attribute to children at the
time of the bootstrap to integer concepts—such as analog magni-
tude and object file representations—are too impoverished to gen-
erate definitions of the integers.'’

It is instructive to compare Carey’s skepticism towards the
unobvious composition strategy for integer concepts with Fodor’s
general skepticism towards the strategy. Fodor is skeptical that

10 For further criticisms of Piantadosi et al’'s model, see Rips, Asmuth, and
Bloomfield (2013).
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unobvious composition could underpin concept learning because
he takes it to be a general fact that most lexical concepts (i.e., con-
cepts such as pog, paINT, and cHAIR that are expressed by single mor-
phemes in natural languages) lack definitions (Fodor, 1981, 1998).
Carey shares Fodor's concern for many concepts, but not for integer
concepts, which clearly can be defined (for example, in terms of
Hume’s Principle and second-order logic). For integer concepts,
Carey’s concern is that they lack definitions in terms of other con-
cepts that are available to the learner. Thus, bootstrapping of integer
concepts has to be more than unobvious composition.

4.3. Selection

There is, however, another way that Modest Bootstrapping
could work: by selecting concepts that are lying in wait and then
making them available. Here is a cartoonish version of the idea that
at least helps to paint the picture: inside the head of every child is a
latent concepts box that contains every concept that can become
available for the child. Thus, barring disability, a child’s latent con-
cept box will contain the concepts SUCCESSOR, DENSITY, SPECIAL RELATIVITY,
HIPSTER, SOCIAL MEDIA, etc., as well as the concepts that no one is pre-
sently in a position to specify but that future humanity has the
potential to uncover. To start with, however, the child cannot use
these lying-in-wait concepts in general cognitive processes
because those processes take place outside of the box and the con-
cepts are stuck inside the box. In order for a concept to escape the
box, the child needs to identify it as answering to her explanatory
purposes. Only then can the concept be selected to join the rest of
the child’s available concepts and participate in general cognitive
processes.

Although no one to my knowledge has actually posited a
latent concepts box, Rey (2014) notes that the idea that new
concepts are learned by being selected from a limited stock of
innate concepts that are lying in wait has echoes in how a
grammar is learned according to versions of Chomskyan
linguistics whereby learning a grammar is a matter of selecting
one of a limited number of possible grammars, all of which
are innately represented. If concept learning worked similarly,
that would make room for “the ecumenical view” that concepts
are both learned and innate (Gross & Rey, 2012; Rey, 2014).
Concepts could be learned by being selected from one’s innate
stock of lying-in-wait concepts.

Chomskyans are motivated to posit a universal grammar, in no
small part, by how effortlessly children learn their native gram-
mars. But while some concept learning is similarly effortless, con-
sisting in what Carey and Bartlett (1978) call “fast mapping,” the
concept learning that Carey seeks to explain through bootstrapping
is anything but. It takes children a year and a half to become car-
dinal principle-knowers after they memorize the count list. And
that’s just the beginning of their understanding of numbers. Many
children never manage to make the conceptual leap to an under-
standing of fractions—a conceptual leap that marks the difference
between scoring above and below the mean of 500 on the SAT
(p. 346). A simple selection-based account thus fits poorly with
the difficulty of many cases of concept learning.

It is possible, however, to combine the selection and unobvious
composition accounts in a way that would explain why concept
learning is so difficult. For example, one might suppose that the
concepts needed to grasp Hume’s principle and second-order logic
are innate and lying in wait to be selected, and that concepts such
as seveN are constructed therefrom. Since such a construction is far
from trivial, one would expect children to find it difficult to learn
the integers. Some such hybrid view that combines selection with
unobvious composition seems to be what Rey (2014) ultimately
has in mind for his ecumenical account of concept learning. And
while Rey rejects Carey’s account of bootstrapping for the reasons

canvassed in Section 2, he proposes that a tamed version of boot-
strapping, interpreted as a species of his ecumenical account, could
overcome those worries.

Carey’s (2014) principal objection to Rey’s proposal is that it
goes unsupported by the empirical evidence. For the conceptual
discontinuities that interest her, there is simply no evidence that
they are engendered by a combination of selection and unobvious
composition. For example, Rey offers no specifics about how the
integer concepts are generated. Are they constructed along Fregean
lines with the concept oNE-TO-ONE CORRESPONDENCE lying in wait? Are
they constructed along Peano’s lines with the concept successor
lying in wait? Rey doesn’t say. Nor does he provide evidence that
would favor one of these interpretations or any other. Rather, Rey’s
case for his ecumenical account seems to be based entirely on an
argument from elimination: Radical Bootstrapping is incoherent;
Modest Bootstrapping implemented through some combination
of selection and unobvious composition is the only alternative;
thus bootstrapping has to be a combination of selection and unob-
vious composition. The next two sections challenge this argument
by targeting its first premise.

5. Computational constraints
5.1. Radical bootstrapping and the circularity challenge

Fodor and Rey are perfectly aware of the difference between an
increase in available expressive power and an increase in total
expressive power.'! It is precisely because they take Carey to be
committed to the latter, and thus to Radical Bootstrapping, that they
are so skeptical of her ability to answer the circularity challenge. If
bootstrapped concepts start off as foreign, they can’t be constructed
from the learner’s other concepts. And if they can’t be constructed
from the learner’s other concepts, there would seem to be nowhere
for them to come from. Underlying this worry is an assumption that
Fodor often makes explicit: the only way for concepts to be learned
is through some form of hypothesis fixation in which to-be-learned
concepts are built compositionally from other (available or latent)
concepts (Fodor, 1975, 1980, 2008). Following Margolis and
Laurence (2011), we can call this assumption the building blocks
model of concept learning. Once the building blocks model is
accepted, unobvious composition (perhaps supplemented by selec-
tion) seems to be the only option. It’s Modest Bootstrapping or bust.

Like many of Fodor’s critics, Carey rejects the building blocks
model (pp. 513-514; 2014, pp. 138-139). The challenge con-
fronting these critics, Carey included, is to characterize an alterna-
tive learning process by which foreign concepts can be made
available. For Carey, of course, that alternative is supposed to be
Radical Bootstrapping. The question is thus how Radical Bootstrap-
ping works. And the key to answering this question, I will now
argue, is the notion of a computational constraint.

5.2. Introducing computational constraints

When summarizing the processes involved in bootstrapping,
Carey writes that they

create explicit representations of knowledge previously embod-

ied in constraints on the computations defined over symbols in

one or more of the systems being integrated. (p. 418, emphasis

added)

And when summarizing how children bootstrap concepts of the
positive integers, Carey writes,

11 See Rey’s (2014) (p. 127) distinction between “functioning psychological expres-
sive power” and “semantic expressive power” and Fodor, 1975 (pp. 84-6), 1980 (p.
151), and 1981 (pp. 270-1).
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The child creates symbols that express information that previ-
ously existed only as constraints on computations. Numerical
content does not come from nowhere, but the process does
not consist of defining “seven” in terms of symbols available
to infants. (p. 477, emphasis added)

Carey thus clearly maintains that bootstrapped concepts such as
SEVEN are constructed, at least in part, from information that is
implicitly coded in constraints on computations.

An analogy may help to motivate this idea. Just as any logic
needs not only axioms but also rules of inference, any computa-
tional theory of mind that posits explicit representations also
needs procedures that govern how those representations can be
manipulated. Much of the power of a logical or mental system
derives from its inference rules or procedures. But inference rules
and procedures are also limited in a way that axioms and explicit
representations are not. They cannot feature as premises or conclu-
sions in reasoning, and so cannot be directly manipulated by other
inference rules or procedures. They thus exist only as constraints
on computations. Carey’s basic insight is that the procedural con-
straints on computations that govern explicit representations can
substantively and significantly contribute to the process of concept
learning despite the fact that they are not themselves
representations.

The importance of computational constraints is familiar from
other areas of psychology, such as vision science. Because there
are infinitely many possible ways of converting the two-
dimensional array of light intensity values on the retina into a
three-dimensional image, vision scientists posit computational
constraints—for example, that light comes from above—to explain
why the conversion proceeds as it actually does. Although these
constraints are contingent, they generally yield veridical percepts
in ecologically valid contexts. Carey likewise holds that there are
contingent computational constraints that govern bootstrapping.

As it happens, this interpretation of bootstrapping allies it with
several alternatives to the building blocks model that have arisen
from the philosophical literature (Block, 1986; Laurence &
Margolis 2002; Margolis 1998; Margolis & Laurence 2011;
Strevens 2012; Weiskopf 2008). Emerging from these alternatives
are two key lessons. The first is that it can be helpful to think about
concept learning in terms of how a blank mental symbol acquires
the metasemantic properties in virtue of which it inherits its repre-
sentational content. The second is that concepts—whether avail-
able or latent—are not the only things that can help to explain
how new metasemantic properties are acquired. At the very least,
there are also computational constraints.

In the next two sub-sections, I'll review two philosophical
accounts of concept learning that embody these lessons and inform
Carey’s own approach. The first, due to Block (1986), illustrates
how computational constraints that are formulated over external
symbols can help to increase one’s total expressive power. The sec-
ond, due to Margolis (1998) and Laurence and Margolis (2002),
shows how computational constraints that are internal to the mind
can do the same.

5.3. External computational constraints

A semantic theory for a symbol system assigns meanings to
symbols. For example, a semantic theory for French might assign
the meaning dog to the word “chien.” A metasemantic theory for
a symbol system explains what the ultimate facts are in virtue of
which symbols have their meanings. One metasemantic theory,
conceptual role semantics, takes its cue from the Wittgenstein
(1953) idea that meaning is determined by use. Thus, the word
“chien” is not intrinsically meaningful; its meaning is deter-
mined by the way French speakers use it. Proponents of concep-

tual role semantics apply this idea to mental symbols,
maintaining that the content of a mental symbol is determined
by its conceptual role—its dispositional causal relations to other
symbols and the world. Following Block (1986), Carey (p. 514ff)
endorses a dual-factor conceptual role theory in which concep-
tual role determines one factor of a concept’s content (its so-
called narrow content) all by itself, and determines the other fac-
tor of a concept’s content (it’s so-called wide or referential con-
tent) in conjunction with contextual factors. For Carey,
conceptual role is thus the most significant metasemantic prop-
erty that concepts have. So in thinking about how a concept is
acquired one can ask how a blank mental symbol comes to have
a new conceptual role—i.e., how it comes to be used in a new
way by operations in the mind.

To explain how external constraints can endow a symbol with a
new conceptual role, Carey rehearses Block’s description of how he
learned concepts from physics such as ENERGY and MOMENTUM.

When I took my first physics course, I was confronted with
quite a bit of new terminology all at once: “energy”, “momen-
tum”, “acceleration”, “mass”, and the like... I never learned
any definitions of these new terms in terms [ already knew.
Rather, what I learned was how to use the new terminology—I
learned certain relations among the new terms themselves
(e.g., the relation between force and mass, neither of which
can be defined in old terms), some relations between the new
and the old terms, and, most importantly, how to generate
the right numbers in answers to questions posed in the new ter-
minology (Block, 1986, pp. 647-648; quoted in Carey 2009, p.

419)

LT

The new terms (“energy,” “momentum,” etc.) served as mean-
ingless external placeholders for Block. And the relations he
memorized among those placeholders (e.g., “F=ma”) along with
the rules he learned for how the placeholders could be manipu-
lated to generate “the right numbers in answers to questions
posed in the new terminology” constrained the conceptual roles
that the placeholders eventually acquired. These memorized
relations and rules thus served as external constraints on the
way these placeholders were used in his mind, and thus the
computations they entered into. In other words, they served as
external computational constraints. Carey maintains that the
process Block describes is an essential component of bootstrap-
ping, and in Section 6 we’ll see how she applies it to some
actual case studies.

One might object that Block’s suggestion still falls prey to the
circularity challenge since any external computational constraints
need to be interpreted by the learner if they’re to generate new con-
cepts, and the learner can only interpret those constraints if she
has the new concepts to start with. But the apparent plausibility
of this objection trades on an equivocation.

On the one hand, if “interpreted” is taken to mean defined in
terms of the learner’s other concepts, then it’s true that the learner
can only interpret the constraints if she has the new concepts to
start with (at least latently). But the whole point of Block’s example
is that external constraints needn’t be so “interpreted” in order to
generate new concepts. In his physics course Block never learned a
definition of the form mass-c anp b BuT NoT E (where C, D, and E are
concepts that were available to Block at the outset). While Block
did learn some relations among the new symbols and his old con-
cepts, those relations were not a definition and did not suffice on
their own to give the symbols their new meanings. Block also
had to learn a bunch of relations among the symbols directly
(e.g., “F=ma") in virtue of which they acquired fundamentally
new conceptual roles, and, therefore, fundamentally new mean-
ings. The process of concept learning Block describes doesn’t fit
the building blocks model.
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On the other hand, if “interpreted” is taken in a looser sense to
mean endowed with a meaning, then it’s true that external con-
straints need to be interpreted by the learner, but it’s false that
the learner needs to possess the new concepts (even latently) prior
to the interpretation. Since the new concepts aren’t learned by being
composed from old concepts a la the building blocks model, the new
concepts needn’t be expressible in terms of the old concepts.

Rey objects that Block’s proposal only gives the illusion of cir-
cumventing the building blocks model and thus overcoming the
circularity challenge. The problem, according to Rey, is that “what
Block is presenting here is a description of how one might learn a
slew of terms at once by way of a ‘Ramsey sentence’,” and a Ram-
sey sentence is “a straightforward logical construction out of con-
cepts already understood” (Rey, 2014, pp. 114-115). Without
getting bogged down in the technical details, a Ramsey sentence
takes advantage of techniques in quantificational logic to enable
multiple new terms to be simultaneously inter-defined with one
another and the language’s old terms (Lewis, 1970; Ramsey,
1931). Rey (2014, p. 116) grants that a Ramsey sentence may not
be explicitly represented in the learner’s brain, but holds that
“the expressive power of the network of roles could be captured
by such a sentence.” Thus, Rey concludes that the method of con-
cept learning that Block articulates cannot increase one’s total
expressive power.

It is one thing, however, to point out—as Rey correctly does—
that Ramsey sentences have the expressive power to define each
of a number of interrelated concepts in terms of preexisting con-
cepts and one another, and quite another matter to suppose that
learners have the conceptual resources to construct Ramsey sen-
tences. Both assumptions are necessary if the newly learned con-
cepts are to count as having been latent in the learners all along.
Yet the conceptual resources needed to construct Ramsey sen-
tences include some fairly sophisticated logical machinery, much
of which wasn’t articulated by logicians until the late 19th Century.
It is thus surprising that Rey provides no evidence that the relevant
logical concepts are available to, or latent in, young learners. By
contrast, Carey provides a wealth of evidence that each input to
the bootstrapping process as she characterizes it is available to
young learners. Moreover, Carey expresses skepticism that sophis-
ticated logical concepts are available to young learners since her
“current guess is that innate logic is largely implicit, embodied in
computations” (2014, p. 146). Thus, while it may be safe to assume
that a college-aged Ned Block had the requisite logical concepts to
construct Ramsey sentences, it would be question-begging to
assume that all three- and four-year-olds have them (even
latently) when they acquire integer concepts.

Carey’s point thus stands that computational constraints among
external symbols have the potential to generate new conceptual
roles that in turn increase one’s total expressive power. Of course,
whether such constraints actually increase a thinker’s total expres-
sive power will depend on auxiliary empirical assumptions about
the concepts the thinker starts with prior to the episode of boot-
strapping, including assumptions about their logical concepts.
But that’s always the case, and amounts to little more than the
observation that Carey’s hypothesis is empirical and can thus be
overturned by evidence that the conceptual starting point is richer
than she hypothesizes.

5.4. Internal computational constraints

To see how internal constraints can support an increase in
expressive power, it is helpful to review Margolis’s (1998) account
of how natural kind concepts are learned. Margolis explicates his
account against the backdrop of Fodor’s (1990) asymmetric-
dependence theory of content, which provides a referential

metasemantics for mental symbols. To a first approximation,
Fodor's asymmetric-dependence theory holds that a symbol repre-
sents a property when the symbol and property stand in an appro-
priate law-like causal relation. To explain how a symbol and
property enter into the appropriate causal relation, Margolis
appeals to a learning mechanism (or sustaining mechanism as he
calls it, since it sustains the appropriate causal relation) with two
components: a kind syndrome and an essentialist disposition. The
kind syndrome is roughly a perceptually based prototype, and
the essentialist disposition treats instances as members of the
same kind just in case they have the same essential property as
exemplars of the syndrome. Together, the kind syndrome and
essentialist disposition sustain the appropriate causal relation
between a newly introduced symbol and the natural kind to which
it refers. Thus, when a learner first comes across a tiger, her natural
kind learning mechanism creates a symbol that gets associated
with her prototype of a tiger, and classifies things as a tiger just
in case they have the same essential property as prototypical
tigers. As a result, the learner’s newly created symbol bears the
appropriate causal relation to tigers.

Crucially, this account does not posit a prefabricated Ticer con-
cept that is merely selected. Nor does it claim that the concept
TIGER is composed from other concepts—not even from the concept
SAME NATURAL KIND As. For while we can gloss the essentialist disposi-
tion as being implicitly governed by the constraint same natural
kind as, the learner need not have any explicit representations with
that content. The essentialist disposition is an internal constraint
on computations that facilitates concept learning.

Carey (p. 518; 2014, p. 142) writes approvingly of Margolis’s
explanation of how concepts such as TiGer are learned, with one
small amendment. She swaps the metasemantics of Fodor's
asymmetric-dependence theory for the dual-factor conceptual role
theory she prefers. In her hands, the computational constraints of
the essentialist disposition help to explain how the concept TiGER
gets its distinctive conceptual role (rather than explaining how it
enters into the appropriate law-like causal relation). But the
upshot for the circularity challenge is the same: internal
computational constraints contribute to a blank symbol’s acquiring
new metasemantic properties in virtue of which the symbol
inherits a new content that increases the thinker’s total expressive
power.

Not only does Carey endorse Margolis’s natural kind learning
mechanism, she maintains that similar learning mechanisms can
be found throughout the animal kingdom. For example, clever
experiments in a planetarium show that the indigo bunting, a
small bird that navigates by the stars, learns the identity of the
North Star by locating it at the sky’s center of rotation (pp. 15—
16; 2014, pp. 140-141). Buntings have a domain-specific learning
mechanism that takes perceptions of the night sky as inputs and
yields representations of the North Star as outputs. This mecha-
nism is governed by a computational constraint that implicitly
encodes the content center of rotation, enabling the representation
NORTH STAR to be learned without being defined compositionally
from other concepts. As we’ll see, Carey thinks that there are also
internal constraints that help to underpin Radical Bootstrapping
in humans.

Margolis’s account of concept learning has not gone unchal-
lenged. Fodor (2008, p. 144) objects:

‘You can learn (not just acquire) A’ and ‘Learning A is sufficient
for acquiring B’ just doesn’t imply ‘You can learn B'. For, the fol-
lowing would seem to be a live option: If you acquire a concept
by learning a theory, then something is learned (namely, the
theory) and something is (merely) acquired (namely, the con-
cept); but what is learned isn’t (merely) acquired and what is
(merely) acquired isn’t learned.
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In other words, Fodor is prepared to grant that kind syndromes can
be learned, and that (given the existence of an essentialist disposi-
tion) learning a kind syndrome is sufficient for acquiring a concept,
but he denies that the concept is thereby learned. Presumably Fodor
would say something similar about bootstrapping insofar as it too
leans on internal computational constraints to explain how con-
cepts are acquired.

Yet Fodor’s objection here threatens to beg the question against
Margolis. Fodor challenged learning theorists to come up with an
alternative to the building blocks model; Margolis articulated an
alternative; and now Fodor insists, rather flat-footedly, that the
alternative doesn’t count as genuine learning, only mere acquisi-
tion. The obvious question is why it shouldn’t count. What does
genuine learning require that this alternative lacks?

As Fodor often notes, not all cases of concept acquisition count
as concept learning. Perhaps Newton acquired the concept GraviTy
because an apple fell on his head, causing his neurons to jiggle in
just the right way; and perhaps some futuristic neurosurgeon
could implant new concepts in your brain. Neither process would
count as concept learning because (Fodor hypothesizes) concept
learning is necessarily a rational process, which requires that it
be intentional; its inputs must bear a sensible semantic relation
to its outputs. Fodor’s ultimate worry about Margolis’s proposal, I
take it, is that it fails to meet this condition. It’s thus more like a
bump on the head or futuristic neurosurgery than genuine
learning.

Margolis and Laurence (2011, p. 529) grant that the inputs to a
learning process need to be semantically related to its outputs.
Carey would likely embrace this condition as well given her char-
acterization of “learning processes as those that build representa-
tions of the world on the basis of computations on input that is
itself representational” (p. 12). So it seems to be common ground
that Fodor’s condition on learning is well motivated; the inputs
to a learning process must bear a sensible semantic relation to
its outputs. But what Fodor seems to miss is that this condition
is compatible with the learning mechanisms that Margolis and
Carey isolate. The reason is that the internal constraints them-
selves admit of intentional characterization in terms of implicit
contents. The essentialist disposition implicitly codes the content
same natural kind as, so when taken together with the explicit con-
tent of the kind syndrome, there is a perfectly intelligible inten-
tional explanation of where the outputted concept comes from.
Likewise, the constraints governing the indigo bunting’s learning
mechanism implicitly code the content center of rotation, so when
taken together with the explicit content of the bunting’s perceptual
representations of the night sky, they lead in a semantically intel-
ligible way to a representation of the North Star.

In reflecting on the idea that internal computational constraints
can contribute to concept learning it is worth recalling, and dwell-
ing upon, the analogy to vision science. Internal constraints, such
as Margolis’s essentialist disposition, promise to behave in many
ways like constraints in vision science, such as the assumption that
light comes from above. Just as the assumption that light comes
from above has figured prominently in explanations of various
visual phenomena, the essentialist disposition promises to figure
prominently in explanations of various instances of concept learn-
ing. Just as the assumption that light comes from above is charac-
terized intentionally, in terms of the directionality of light in the
world, the essentialist disposition is characterized intentionally,
in terms of the property of being a natural kind. Just as the assump-
tion that light comes from above is implicitly coded as a constraint
that governs transformations among explicit representations with-
out itself being explicitly represented, the essentialist disposition is
implicitly coded as a constraint that governs transformations from
kind syndromes to natural kind concepts without itself being
explicitly represented. Finally, there is a well-entrenched method

for discovering the computational constraints that govern both
vision and concept learning: researchers create ecologically invalid
conditions in the laboratory and see how the system breaks down.

Rey (2014, p. 122) agrees, “pace Fodor, that it is not fortuitous
that the sustaining mechanism establishes a certain nomic depen-
dence.” In other words, Rey accepts that the operation of Margolis’s
natural kind mechanism can be characterized as rational and
intentional. But Rey raises a different objection to Margolis’s natu-
ral kind learning mechanism. He complains that Margolis fails to
explain why the mechanism would lock onto a kind such as zebra
rather than some deviant category such as “plains zebra, Grévy’s
zebra, mountain zebra, African equids, horses, mammals, animals, liv-
ing things, terrestrials...” (emphasis in original). But here Rey is just
raising the deviant-interpretation challenge again, which we've
agreed to set aside. As we’'ve already noted, the deviant-
interpretation challenge is independent of the circularity challenge
and afflicts all theories of learning, not just theories of concept
learning.'?

I conclude that internal computational constraints are like
external computational constraints insofar as they can participate
in learning processes that increase a thinker’s total expressive
power without circularity.

6. Radical bootstrapping
6.1. Radical bootstrapping in outline

Sometimes new concepts are the direct output of a dedicated
mechanism (such as Margolis’s natural kind learning mechanism)
that was selected through evolution to produce concepts of a par-
ticular type. Carey calls this the “relatively easy route to new con-
ceptual primitives” (2014, p. 142). By contrast, Carey calls
bootstrapping the “relatively hard route to new conceptual primi-
tives” (2014, p. 145). There is no dedicated bootstrapping mecha-
nism that spits out concepts of a particular type. Rather,
bootstrapped concepts are outputs of a more complex, three-step
process:

(a) The construction of a set of placeholders.

(b) The use of computational constraints to partially interpret
those placeholders.

(c) The completed interpretation of those placeholders through
modeling processes.

Although commentators often ignore the middle step, we can now
see that it is essential. Without step (b), it really would be a mys-
tery how the placeholders could acquire contents that increase the
thinker’s total expressive power. Modeling processes are not suffi-
cient on their own. With step (b), however, genuinely new explicit
content can emerge. Computational constraints—whether external,
internal, or both—control the way that placeholders are related to
one another and to the thinker’s other concepts, which in turn
endows them with new conceptual roles and thus new contents.

6.2. Radical bootstrapping of integer concepts

Carey’s most detailed discussion of bootstrapping concerns
children’s acquisition of integer concepts. To start with, children

12 As Carey (2014, pp. 142-145) observes, it’s not clear in any case that Margolis is
indebted for an explanation of why the natural kind mechanism operates in the way
that it does rather than in some other way. As a matter of contingent fact, it's
dedicated to generating basic-level kinds (kinds at the grain of zebra, tiger, dog, etc.). It
might have been governed by different constraints—just as the visual system might
have been governed by the assumption that light comes from below. But that’s just to
say that the constraints are contingent.
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memorize the count list, which serves as a meaningless place-
holder system. Computational constraints, both internal and exter-
nal, are then used to partially interpret those placeholders.

To see how internal computational constraints help to interpret
the placeholders, consider Carey’s summary of how enriched paral-
lel individuation endows the first few words in the count list with
meaning.

The meaning of the word “one” could be subserved by a mental
model of a set of a single individual {i}, along with a procedure
that determines that the word “one” can be applied to any set
that can be put in 1-1 correspondence with this model. Simi-
larly, two is mapped onto a longterm memory model of a set
of two individuals {j, k}, along with a procedure that determines
that the word “two” can be applied to any set that can be put in
1-1 correspondence with this model. And so on for “three” and
“four.” (p. 476, emphasis added)

”
y

Here the words “one,” “two,” “three,” and “four” acquire new con-
ceptual roles by being associated with procedures that exist “only
as constraints on computations” (p. 477). These procedures ensure
that the child holds that there is “one” F just in case the Fs can be
put in one-to-one correspondence with the member of the set {i}
in long-term memory, that there are “two” Fs just in case the Fs
can be put in one-to-one correspondence with the members of
the set {j, k} in long-term memory, etc. In establishing these new
conceptual roles, the child’s object file systems are doing double
duty: they are representing the objects that belong to two sets;
and they are determining that the objects from those sets stand
in one-to-one correspondence. While the object files explicitly rep-
resent objects, they only implicitly represent that the objects are in
one-to-one correspondence. There is a procedure by which it is
determined whether two sets stand in one-to-one correspondence.
But there is no explicit representation ONE-TO-ONE CORRESPONDENCE in the
system. Thus, the child does not compositionally define the con-
cepts oNE, Two, THREE and Four from the concepts object and oNE-To-
ONE CORRESPONDENCE. But we can nevertheless provide an intentional
explanation of how the child imbues the first few number words
with their contents by appealing, in part, to the content of the pro-
cedure implicitly coded in the object file system that places objects
in one-to-one correspondence.

External constraints also contribute to the bootstrapping pro-
cess for integer concepts. On the way to interpreting their count
list, children learn to play a game that consists of pointing to each
member of a collection as they rehearse the ordered count list,
such that the last word uttered corresponds to the cardinality of
the collection. Of course, the children do not conceptualize what
they are doing as representing the cardinality of a collection. As
far as they’re concerned, they’re just playing a game, akin to “eeny,
meeny, miny, mo.” But from our perspective as theorists we can
see that they are endowing the words in their count list with
new conceptual roles. Thus, “three” comes to have the conceptual
role of being uttered in the presence of collections of three objects;
“four” comes to have the conceptual role of being uttered in the
presence of collections with four objects; etc.

At this point, the child has partially interpreted her place-
holder terms by virtue of having learned two procedures—one
that draws on enriched parallel individuation and a second that
draws on the counting game. But this interpretation is only par-
tial. There is nothing that integrates these two procedures, and
so it remains an open possibility for the child that the terms
“one,” “two,” “three,” and “four” employed in each process are
systematically ambiguous. There is also no appreciation that the
words in the count list are ordered by the successor relation, such
that the difference between the referents of any two adjacent
count words is exactly one. The modeling processes of analogy

» o«
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and induction overcome these limitations and enrich the
interpretation.

Using the procedural knowledge from their enriched parallel
individuation system, the child notices that when a collection with
“one” F is combined with another collection with “one” F, the
result is a collection with “two” Fs; that when a collection with
“two” Fs is combined with another collection with “one” F, the
result is a collection with “three” Fs; and that when a collection
with “three” Fs is combined with a collection of “one” F, the result
is a collection with “four” Fs. The child then draws an analogy: just
as the terms “one,” “two,” “three,” “four” that are associated with
enriched parallel individuation refer to quantities that are sepa-
rated by the addition of “one” individual, perhaps those same
terms when they are associated with the counting game also refer
to quantities that are separated by the addition of “one” individual.
Using induction, the child then extrapolates: perhaps every term in
the count list refers to a quantity that is “one” more than the quan-
tity designated by the preceding term. In this way, the modeling
processes of analogy and induction integrate the separate pieces
of procedural knowledge that had been associated separately with
enriched parallel individuation and the counting game, engender-
ing new conceptual roles for the count list symbols that embody
an ordering by the successor relation.

Recall Rey’s version of the circularity challenge from Section 2.1,
which charges Carey with smuggling the concept successor in
through the back door to support the crucial analogy and induc-
tion. The problem with Rey’s objection should now be clear: it
overlooks the contribution afforded by computational constraints.
By the time the analogy and the induction occur, the placeholders
have already been partially interpreted by way of those con-
straints. In particular, the child has already noticed that the quan-
tities associated with “one” to “four” by enriched parallel
individuation differ by “one” individual. The child thus has all
the resources she needs to analogize that the same difference char-
acterizes the phonetically identical terms in her memorized count
list, and then to induce that it characterizes the remainder of the
terms in the count list. Doing these things establishes a new con-
ceptual role for the terms in the count list that embodies the suc-
cessor relation without explicitly presupposing it or defining it
compositionally from simpler concepts.

Of course, this explanation is not without its limits. One might
still ask, as Rey and Rips et al. do, why children induce that the
remainder of their count list is ordered by the successor relation
rather than in some other way. But that’s just to point out that
Carey, like everyone else who appeals to induction as an element
in an account of learning, has not supplied an answer to the
deviant-interpretation challenge.

”

6.3. Radical bootstrapping beyond integer concepts

Although the bootstrapping of integer concepts is Carey’s most
detailed case study, she also discusses the bootstrapping of rational
number concepts such as '/3 and of physical concepts such as
MATTER. Again, Carey maintains that placeholders, computational
constraints, and modeling processes play an essential role (p. 418).

To grasp rational number concepts, children must learn how
fractions and decimals represent, that division (which relates the
numerator and denominator of a fraction) is distinct from subtrac-
tion, that not all numbers are ordered by the successor relation
(e.g., there is no successor to !/3), and that in between any two inte-
gers (e.g., 1 and 2) there are infinitely many rational numbers. But
this conceptual transition is exceedingly difficult and takes chil-
dren many years to complete. Thus, many 11- and 12-year-olds
report that !/, is bigger than !/; because 4 is bigger than 3, that
1.032 is bigger than 1.22 because 32 is bigger than 22, that there
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are no numbers (or only a few numbers) between 0 and 1, and that
you soon get to 0 if you keep dividing by 2 (pp. 344-359).

To acquire physical concepts such as MATTER, WEIGHT, and DENSITY,
children must learn to differentiate weight (an extensive magni-
tude) from density (an intensitve magnitude), air from nothing-
ness, and materiality from physical reality. But for a long period
of time children fail to systematically grasp such differentiations.
Thus, they opine that a small piece of Styrofoam weighs zero
grams; they fail to conserve matter and weight; they claim that
dreams are made of air; they insist that shadows exist in the dark
but we just can’t see them; and they judge a large aluminum object
to be made of heavier stuff than a small steel object (pp. 379-411).

Carey argues that these two transitions are facilitated by mutu-
ally supporting bootstrapping mechanisms. Each transition begins
with placeholder structures. For the transition to rational number
concepts, the notation of fractions and decimals serve as place-
holders. For the transition to physical concepts, words such as
“matter,” “weight,” and “density” serve as placeholders. Some rela-
tions among these placeholders and one’s other concepts are
learned directly, as when children are taught the equation D = M/
V or are told, “The larger the denominator the smaller the fraction.”
These learned relations place external constraints on how the
placeholders are ultimately interpreted. They forge conceptual
roles for the placeholders that help to determine their meanings
in much the same way that learning to play the counting game
does for integer terms.'>

Finally, children deploy modeling processes to complete the
interpretation of their placeholders. For example, they draw analo-
gies between their partially interpreted placeholder terms and
other domains that they have already conceptualized. Thus, one
curriculum intervention discussed by Carey that has been espe-
cially successful at helping children transition to an understanding
of matter and density makes use of analogies to other extensive
and intensive quantities that are better understood, such as dots
per box and the sweetness of a solution. By analogizing to these
better-understood domains, children are able to construct new
conceptual roles for their placeholder terms, thereby endowing
them with further content.

As with the case of integer concepts, there is no worry about cir-
cularity for these episodes of bootstrapping because the new con-
cepts aren’t defined from old ones along the lines of the building
blocks model. Rather, a set of blank symbols (placeholders) are
introduced that inherit new contents at least in part from
computational constraints that help to determine their conceptual
roles—their dispositions to causally relate to one another, to other
symbols, and to the world.

7. Conclusion

Carey’s account of bootstrapping confronts the circularity chal-
lenge: how can bootstrapping alter a thinker's expressive power
without presupposing that the thinker had concepts with the
new expressive power all along? This paper has explored two
interpretations of Carey’s account that promise to answer this
challenge.

The first is Modest Bootstrapping, which throws in the towel on
the possibility of explaining how thinkers could alter their total
expressive power, but does seek to explain how they can alter their
available expressive power. Towards this end, proponents of Mod-
est Bootstrapping posit latent concepts from which newly available

13 Carey says less about how internal computational constraints might contribute to
these episodes of bootstrapping. It may be that they aren’t involved at all (there is no
reason to think that every episode of bootstrapping requires contributions from both
external and internal constraints). Or it may be that further research is needed to
reveal how they contribute.

concepts are composed and/or selected. The main problem with
this approach is the dearth of empirical evidence that the posited
latent concepts actually exist.

The second interpretation is Radical Bootstrapping, which tack-
les the circularity challenge head on by explaining how foreign
concepts are made available through an extended, three-step pro-
cess. First, a network of placeholders is constructed. Then compu-
tational constraints—both internal and external to the mind—
circumscribe conceptual roles for those placeholder symbols,
thereby molding their contents. Finally, modeling processes such
as induction enable the learner to complete the interpretation of
the placeholders.

At this point, the deviant-interpretation challenge emerges:
why do children induce this way rather than that way? And I have
not explained how Carey—or anyone else—can address it. To this
extent, my defense of bootstrapping has been partial. When it
comes to induction, Carey‘s account of bootstrapping is no better
off—but also no worse off—than every other account of ampliative
learning.
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